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ABSTRACT To recognize people in unconstrained video, one has to explore the identity information
in multiple frames and the accompanying dynamic signature. These identity cues include face, body,
and motion. Our approach is based on video-dictionaries for face and body. Video-dictionaries are a
generalization of sparse representation and dictionaries for still images. We design the video-dictionaries
to implicitly encode temporal, pose, and illumination information. In addition, our video-dictionaries are
learned for both face and body, which enables the algorithm to encode both identity cues. To increase the
ability of our algorithm to learn nonlinearities, we further apply kernel methods for learning the dictionaries.
We demonstrate our method on the Multiple Biometric Grand Challenge, Face and Ocular Challenge Series,
Honda/UCSD, and UMD data sets that consist of unconstrained video sequences. Our experimental results
on these four data sets compare favorably with those published in the literature. We show that fusing face
and body identity cues can improve performance over face alone.

INDEX TERMS Video-based face recognition, person recognition, dictionary learning, kernel dictionary
learning.

I. INTRODUCTION
Face recognition research has traditionally concentrated on
recognition from still images [1]–[3]. Due to the widespread
deployment of surveillance camera, face recognition from
video has gained a lot of attention in recent years [4], [5]. In an
unconstrained video, recognition purely from face ignores
other useful information. In practice, one can enhance the
recognition of people from video by fusing identity cues from
the face and body and their motion [6].

There are a number of face recognitionmethods that rely on
the temporal dynamics in face videos [4]. Temporal dynamics
can be exploited to characterize how facial appearance and
motions change together, represent idiosyncratic features of
a person or improve recognition accuracy through a tracking
scheme. While the advantage of using motion information
in face videos has been widely recognized, computational
models for video-based face recognition have only recently
received attention [1], [4], [7]. In video-based face and per-
son recognition, a key challenge is exploiting all available
identity-cues in video. In addition, different video sequences

of the same subject may contain variations in resolution,
illumination, pose, and facial expressions. These variations
contribute to the challenges in designing an effective video-
based face recognition algorithm.
Existing approaches to the video-based face recognition

problem include multi-still face recognition [8], extracting
joint appearance and behavioral features from video [9], or
explicitly modeling the temporal correlations between faces
in two videos [7]. It has been shown that for a generic
video-face recognition algorithm, performance can be signif-
icantly improved by simultaneously performing recognition
and tracking [5], [9].
There are a number of approaches for fusing face and

gait for person recognition [10], [11]. However, there is a
substantial difference between the composition of gait videos
and unconstrained video. In the vast majority of gait videos,
people are walking across the field of view and the complete
body is visible [12]. In unconstrained videos, people can be
performing any action and only a portion of a person’s body
could be visible.
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FIGURE 1. Overview of the proposed approach. The extracted feature can be face images, body images, or motion identity
cues. For illustration purpose only, here we just show cropped face images as the feature.

To address the challenges in recognizing people from
unconstrained video, we present a generative approach based
on dictionary learning methods. Figure 1 shows an overview
of our approach. While Figure 1 illustrates our approach
for faces, we apply the same method for recognition using
the body. From cropped images of faces or bodies extracted
from a video sequence, we first partition the video sequence
so that images with the same or close pose and illumi-
nation conditions are in one partition. This step removes
the temporal redundancy while capturing variations due to
changes in pose and illumination. For each partition,
a sub-dictionary is learned where the representation
error is minimized under a sparseness constraint. These
partition-specific sub-dictionaries are combined to form a
sequence-specific dictionary (i.e. a video dictionary). In the
recognition phase, images of faces or bodies from a given
query video sequence are projected onto the span of atoms
in every sequence-specific dictionary. From the projection
onto the atoms, the residuals are computed and combined
to perform recognition or verification. The dictionary-based
generative model is based on only the video sequence being
processed. Thus, the method is scalable and incremental to
increasing galleries. To handle the non-linearities present
in the video data, we extend our original work in [13] by
kernelizing the dictionary learning algorithm. In addition,
we combine the face features with the upper body features
to improve the recognition accuracy. We demonstrate the

effectiveness of the proposed dictionary approach through
comparisons with other recently proposed state-of-the-art
methods, and with human performance on the Multiple Bio-
metric Grand Challenge (MBGC) [14], [15], Face and Ocular
Challenge Series (FOCS) [6], [16], Honda/UCSD [9], and
UMD [17] datasets.
The key contributions of our work are1:
1. We introduce video-dictionaries for video-to-video face

recognition. Through video partitioning, the learned dic-
tionaries implicitly encode face pose and illumination
information.

2. The dictionary learning algorithm is kernelized to handle
non-linearities in the data samples.

3. The video dictionaries are further designed to encode
the upper body features. The face features are combined
with the upper body features to enhance the recognition
accuracy.

The rest of the paper is organized as follows: In Section II
we review some recent video-based face recognition
methods. Section III describes the proposed dictionary-based
video face recognition algorithm. Section IV describes the
non-linear kernel dictionary learning. In sectionV, we present
results on four challenging video datasets. Section VI
concludes the paper with a summary and discussion.

1Preliminary version of this work appeared in [13]. Items 2, and 3 are
extensions to [13].

1784 VOLUME 3, 2015



Y.-C. CHEN et al.: Dictionary-Based Face and Person Recognition From Unconstrained Video

II. RELATED WORK
In this section, we review some of the recent video-based
face recognition methods. In video-based face recognition,
given a test video of a moving face, the first step is to
track a set of facial features across all the frames of the
video. Significant work has been done on face tracking using
two-dimensional (2D) appearance-based models [18]–[20].
The 2D approaches, however, do not provide the
three-dimensional (3D) configuration of the head, and are not
robust to large changes in pose or viewpoint. To deal with this
problem, several methods have been developed for 3D face
tracking. Cascia et al. [21] proposed a cylindrical face model
for face tracking. An extension of this work was proposed
by Aggarwal et al. in [22] based on a particle filter for state
estimation.

Temporal information in videos can be exploited for
simultaneous tracking and recognition of faces without
the need to perform these tasks in a sequential manner.
One such method was proposed by Zhou et al. in [23].
Their tracking-and-recognition approach resolves uncertain-
ties in tracking and recognition simultaneously in a unified
probabilistic framework. Another method was proposed by
Lee et al. [9], where a model of a subject is represented by
a complex nonlinear appearance manifold. All frames in a
video sequence are samples from an appearance manifold.
To simplify the problem, the manifold is approximated by
a collection of linear subspaces. Each subspace consists of
nearby poses and is obtained by principle component
analysis (PCA) of frames from training video sequences.
If sufficient 3D view variations and illumination variations
are available in the training set, this method is robust to large
changes in appearance.

In a related work, Arandjelović [24] and
Arandjelović and R. Cipolla [25] represent the appearance
variations due to shape and illumination on faces by assuming
that the shape-illumination manifold of all possible illumina-
tions and poses is generic for faces. This in turn implies that
the shape-illumination manifold can be estimated using a set
of subjects independent of the test set. It was shown that the
effects of face shape and illumination can be learned using
PCA from a small, unlabeled set of video sequences of faces
acquired in randomly varying lighting conditions [5]. Given
a novel sequence, the learned model is used to decompose the
face appearance manifold into albedo and shape-illumination
manifolds. Then a classification decision is made using robust
likelihood estimation.

Sprechmann and Sapiro [26] proposed a framework for
unsupervised clustering based on dictionary learning and
sparse representation that can simultaneously learn a set of
dictionaries. Each dictionary optimally represents the associ-
ated cluster in the sense that signals are best reconstructed
in a sparse coding manner. As a result, they model the
data as the of union of learned low dimensional subspaces.
Unlike [26], our method is not specifically an unsupervised
clustering method. It is mainly designed for video-based
face recognition which uses clustering as one of its steps.

Yang et al. [27] proposed to learn a set of metafaces from
the training dataset and apply it to the sparse representation-
based classification algorithm for face recognition. Another
difference is that we propose a non-linear extension of our
algorithm.
Recently, Turaga et al. [28] presented a statistical method

for video-based face recognition, which uses subspace-based
models and tools from Riemannian geometry of the
Grassmann manifold. Intrinsic and extrinsic statistics are
derived for designing maximum-likelihood classification
rules. An image set classification methods for video-based
face recognition problem was recently proposed by
Hu et al. [29]. This method is based on a measure of between-
set dissimilarity. This dissimilarity is the distance between
sparse approximated nearest points of two image sets and is
found by a scalable accelerated proximal gradient method
for optimization. Other image set-based face recognition
methods include [30]–[35]. Recently, a three stage video-
based face recognition algorithm was proposed in [36] that
computes a discriminative video signature as an ordered list
of still face images from a large dictionary. Some of the
other recent face recognition and related algorithms
include [37]–[45]. See [36] for a survey of recent video-based
face recognition algorithms.

III. DICTIONARY-BASED VIDEO ALGORITHM
In this section, we present the details of our dictionary-based
video face and person recognition algorithm. The details of
our approach are described for face video dictionaries. The
approach is exactly the same for learning dictionaries for
bodies. We first describe how the video sequence is parti-
tioned into sub-sequences in section III-A, and how we build
sequence-specific dictionaries in section III-B. Identification
and verification are described in sections III-C and III-D,
respectively.

A. VIDEO SEQUENCE PARTITION
For each frame in a video sequence, we first detect and crop
the face and body regions automatically using the Viola-Jones
object detection framework [46]. We then partition all the
cropped face images into K different partitions. We partition
the cropped faces by a clustering algorithm that is inspired by
a video summarization algorithm [47]. Let S = {f1, . . . , fn}
be the set of all n cropped faces from a video sequence.
The following steps summarize our video sequence partition
approach.
One major difference between our method and [47] is that

the overall cost J (S) , α × err(S)+ (1− α)× (D− div(S))
used in [47], is now replaced with

M (S) ,
div(S)
err(S)

, (1)

where err(S), div(S) and D are the square error, diversity and
an upper bound of diversity of summary S(s1, s2, . . . , sK ),
respectively [47], where si’s are representatives. The
terms err(S) and div(S) are square error and diversity,
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Algorithm 1 Video Sequence Partition Algorithm
Initialization of sets:
S = {f1, . . . , fn}, I = {1, 2, . . . , n}, T = φ.

Procedure:
1. Find (i∗, j∗) = argmax

i,j∈I ,i6=j
‖fi − fj‖2.

2. Update of sets: t1← i∗, t2← j∗,T ← T
⋃
{t1, t2},

I ← I \ {i∗, j∗}.
3. Find k∗ = argmax

k∈I

∏|T |
l=1 ‖ftl − fk‖2.

4. Update of sets: t|T |+1← k∗,T ← T
⋃
{t|T |+1},

I ← I \ {k∗}.
5. Repeat steps 3 and 4 until |T | = K .
6. Given {ft1 , . . . , ftK }, use the nearest neighbor
criterion to partition S into K partitions, denoted by
S(ft1 , . . . , ftK ) =

⋃K
i=1 Si.

S(ft1 , . . . , ftK ) are the initial partitions which are
followed by N iterations of updating described
in step 7 and 8.
7. Randomly select si from Si, i = 1, 2, . . . ,K , as
representatives. Find the corresponding nearest
neighbor partitions which are denoted by
S(s1, s2, . . . sK ), and calculate the corresponding score
M (S(s1, s2, . . . sK )).
8. Repeat step 7, and keep updating for
{s∗1, s

∗

2, . . . , s
∗
K } which gives the highest scoreM , until

the number of repeating iterations for step 7
reaches N . In other words, {s∗1, s

∗

2, . . . , s
∗
K } =

argmax
si∈Si,i=1,2,...,K , in N iterations

M (S(s1, s2, . . . sK )).

Output:
K partitions, S(s∗1, s

∗

2, . . . , s
∗
K ).

respectively [47]. They are defined as follows

err(S) , tr

 K∑
i=1

∑
s∈Si

(s− si)(s− si)T

, (2)

and

div(S) , tr

[
K∑
i=1

(si − s̄)(si − s̄)T
]
, (3)

where s̄ = 1
K

∑K
i=1 si and tr(A) denotes the trace of matrixA.

The diversity represents the scatter of representatives to their
mean, while the square error represents the total summa-
tion of partition-specific scatters, over all K partitions. The
maximization of M (S) is achieved through maximizing the
diversitywhile minimizing the square error. Using this score,
there is no need to set the weighting factor α [47], and the
original cost minimization problem becomes an equivalent
score maximization problem.

The proposed video partition technique is summa-
rized in Algorithm 1. In steps 1 and 3, K initial rep-
resentatives are chosen so that they are separated as
far apart as possible. The corresponding initial K par-
titions are then determined by the nearest neighbor cri-

terion. For all subsequent iterations steps (7 and 8),
K distinct representatives are chosen always from the
predetermined K initial partitions, and are used to calcu-
late the associated score. The representatives that give the
maximum M (S) among, say N iterations, are recorded as
exemplars. The corresponding final partitions are obtained by
the nearest neighbor criterion.

B. BUILDING SEQUENCE-SPECIFIC DICTIONARIES
By partitioning the original video sequence, we obtain K
separate sequences each containing images with specific pose
and/or lighting conditions. We find the best representation
for each member in a given partition by learning a partition
specific dictionary. A dictionary is learned with the minimum
representation error under a sparseness constraint. Thus, there
will beK sub-dictionaries built to represent a video sequence.
Due to changes in pose and lighting in a video sequence, the
number of face images in a partition will vary. For partitions
with very few images, before building the corresponding dic-
tionary, we augment the partition by introducing synthesized
face images. This is done by creating horizontally, vertically
or diagonally position shifted face images, or by in-plane
rotated face images. We assume that each partition contains
B images.
Let Gi

j,k be the augmented gallery matrix of the
kth partition of the jth video sequence of subject i. In

Gi
j,k = [gij,k,1g

i
j,k,2, · · · , g

i
j,k,B] ∈ IR

L×B, (4)

each column is a vectorized form of the corresponding
cropped grayscale face image of size L. Given Gi

j,k , a dic-
tionary Di

j,k ∈ RL×K0 is learned such that the columns
of Gi

j,k are best represented by linear combinations of K0

atoms of Di
j,k . This can be done by solving the following

optimization problem

(D̂i
j,k , 0̂

i
j,k ) = argmin

Dij,k ,0
i
j,k

‖Gi
j,k − Di

j,k0
i
j,k‖

2
F ,

subject to ‖γ l‖0 ≤ T0, ∀l, (5)

where γ l is the lth column of the coefficient matrix
0ij,k and T0 is a sparsity parameter. The `0 sparsity measure

‖·‖0 counts the number of nonzero elements in the representa-
tion and ‖G‖F is the Frobenius norm of the matrixG defined
as ‖G‖F =

√∑
i
∑

j |G(i, j)|2. Many approaches have been

proposed in the literature for solving such optimization prob-
lems. In this paper, we adapt the K-SVD algorithm [48] for
solving (5) due to its simplicity and fast convergence.2 The
K-SVD algorithm alternates between sparse-coding and
dictionary update steps. In the sparse-coding step, the dictio-
nary Di

j,k is fixed and the representation vectors γ l are found
for each example gij,k,l . Then, the dictionary is updated atom-
by-atom in an efficient way [48].
The video sequence-specific dictionary is con-

structed by concatenating partition-level sub-dictionaries.

2Here ‘‘K’’ in ‘‘K-SVD’’ equals number of atoms K0 in a learned dictio-
nary, not the number of partitions K of a video sequence.
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In other words, the jth dictionary of subject i is

Di
j = [Di

j,1D
i
j,2 . . .D

i
j,k ]. (6)

C. IDENTIFICATION
Let Q denote the total number of query video sequences.
Given the mth query video sequence Q(m), where
m = 1, 2, . . . ,Q, we can write Q(m)

=
⋃K

k=1Q
(m)
k . Parti-

tions Q(m)
k are expressed by Q(m)

k = [q(m)k,1 q(m)k,2 . . . q(m)k,nk ],

where q(m)k,l is the vectorized form of the lth of the total nk
cropped face images belonging to the kth partition. Assume
that there are a total of P gallery video sequences. We can
write the associated dictionaries D(p) for p = 1, 2, . . . ,P,
where each D(p) corresponds to Di

j for some subject i and its

jth video sequence. Image q(m)k,l votes for sequence p̂ with the
minimum residual. In other words,

p̂ = argmin
p
‖q(m)k,l − D(p)D

†
(p)q

(m)
k,l ‖2, (7)

where D†
(p) = (DT

(p)D(p))−1DT
(p) is the pseudoinverse of D(p)

and D(p)D
†
(p)q

(m)
k,l is the projection of q(m)k,l onto the span of

atoms in D(p).
Tomake the sequence-level decision, we select p∗ such that

p∗ = argmax
p

(
K∑
k=1

Cp,k

)
, (8)

where Cp,k is the total number of votes from partition k for
sequence p. Finally, using the knowledge of the correspon-
dence m(·) between subjects and sequences, we assign the
query video sequence Q(m) to subject i∗ = m(p∗).

D. VERIFICATION
For verification, given a query video sequence and any
gallery video sequence, the goal is to correctly determine
whether these two belong to the same subject. The well-
known receiver operating characteristic (ROC) curve, which
describes relations between false acceptance rates (FARs) and
true acceptance rates (TARs), is used to evaluate the perfor-
mance of verification algorithms. As the TAR increases, so
does the FAR. Therefore, one would expect an ideal verifica-
tion framework to have TARs all equal to 1 for any FARs. The
ROC curves can be computed given a similarity matrix. In the
proposed dictionary-based method, the residual between a
query Q(m) and a dictionary D(p), is used to fill in the (m, p)
entry of the similarity matrix. Denoting the residual byR(m,p),
we have

R(m,p)
= min

k∈{1,2,...,K }
R(m,p)
k , (9)

where

R(m,p)
k , min

l∈{1,2,...,nk }
‖q(m)k,l − D(p)D

†
(p)q

(m)
k,l ‖2. (10)

In other words, we select the minimum residual among all
l ∈ {1, 2, . . . , nk}, and all k ∈ {1, 2, . . . ,K }, as the similarity
between the query video sequence Q(m) and dictionary D(p).

We denote the resulting dictionary-based face recognition
algorithm as DFRV.

IV. NON-LINEAR KERNEL DICTIONARIES FOR
VIDEO-BASED FACE RECOGNITION
The class identities in the face dataset may not be linearly
separable. Hence, we also extend the DFRV framework to the
kernel space. This essentially requires the dictionary learning
model to be non-linear [49].

Let 8 : RL
→ H be a non-linear mapping from

L dimensional space into a dot product spaceH. A non-linear
dictionary can be trained in the feature spaceH by solving the
following optimization problem

(Âi
j,k , 0̂

i
j,k ) = arg min

Aij,k ,0
i
j,k

‖8(Gi
j,k )−8(G

i
j,k )A

i
j,k0

i
j,k‖

2
F ,

subject to ‖γ l‖0 ≤ T0, ∀l, (11)

where

8(Gi
j,k ) = [8(gij,k,1),8(g

i
j,k,2), · · · ,8(g

i
j,k,B)]. (12)

Since the dictionary lies in the linear span of the samples
8(Gi

j,k ), in (11) we have used the following model for the
dictionary in the feature space,

Di
j,k = 8(G

i
j,k )A

i
j,k , (13)

where Ai
j,k ∈ RB×K0 is a matrix with K0 atoms [49]. This

model provides adaptivity via modification of the matrixAi
j,k .

Through some algebraic manipulations, the cost function
in (11) can be rewritten as,

‖8(Gi
j,k )−8(G

i
j,k )A

i
j,k0

i
j,k‖

2
F

= tr((I− Ai
j,k0

i
j,k )

TK(Gi
j,k ,G

i
j,k )(I− Ai

j,k0
i
j,k )), (14)

where K(Gi
j,k ,G

i
j,k ) is a kernel matrix whose elements are

computed from

κ(r, s) = 8(gij,k,r )
T8(gij,k,s). (15)

It is apparent that the objective function is feasible since it
only involves a matrix of finite dimensionK ∈ RB×B, instead
of dealing with a possibly infinite dimensional dictionary.
An important property of this formulation is that the com-

putation of K only requires dot products. Therefore, we are
able to employ Mercer kernel functions to compute these
dot products without carrying out the mapping 8. Some
commonly used kernels include polynomial kernels

κ(x, y) = (〈x, y〉 + c)d (16)

and Gaussian kernels

κ(x, y) = exp
(
−
‖x− y‖2

σ

)
, (17)

where c, d and σ are the parameters.
Similar to the optimization of (5) using the linear

K-SVD [48] algorithm, the optimization of (11) involves
sparse coding and dictionary update steps in the feature space
which results in the kernel K-SVD algorithm [49]. Details of
the optimization can be found in [49].
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A. FEATURE SPACE IDENTIFICATION
Let Ai

j = diag[Ai
j,1,A

i
j,2, · · · ,A

i
j,K ] denote the jth learned

coefficient matrix of subject i. Assuming that there are a total
of P gallery video sequences, we can write the associated
coefficient matrices A(p) for p = 1, 2, . . . ,P, where A(p)
equals Ai

j for some subject i and its jth video sequence.
Accordingly, we use G(p) , [g(p),1 · · · g(p),K×B] to denote
Gi
j = [Gi

j,1,G
i
j,2, · · · ,G

i
j,K ]. We find the coefficient vec-

tors, x(m)k,l with at most T0 non-zero elements such that
8(G(p))A(p)x

(m)
k,l approximates q(m)k,l byminimizing the follow-

ing problem

min
x(m)k,l

‖8(q(m)k,l )−8(G(p))A(p)x
(m)
k,l ‖2

such that ‖x(m)k,l ‖0 ≤ T0. (18)

The above problem can be solved by the Kernel Orthogonal
Matching Pursuit (KOMP) algorithm [49].

Similar to (7), image q(m)k,l votes for sequence p̂ such that

p̂ = argmin
p

r(q(m)k,l ,A(p))

= argmin
p
‖8(q(m)k,l )−8(G(p))A(p)x

(m)
k,l ‖

2
2

= argmin
p

K(q(m)k,l ,q
(m)
k,l )− 2K(q(m)k,l ,G(p))A(p)x

(m)
k,l

+ x(m)Tk,l AT
(p)K(G(p),G(p))A(p)x

(m)
k,l , (19)

where

K(q(m)k,l ,G(p)) = [κ(q(m)k,l , g(p),1), κ(q
(m)
k,l , g(p),2), · · · ,

κ(q(m)k,l , g(p),K×B)]. (20)

To make the sequence-level decision for identification,
we select p∗ by (8), with Cp,k replaced by C̃p,k , the total
number of votes from the kth partition of themth query video
for the pth target video sequence according to (19).

B. FEATURE SPACE VERIFICATION
For verification using the kernel dictionaries, we construct the
similarity matrix R̃(m,p) by

R̃(m,p)
= min

k∈{1,2,...,K }
R̃(m,p)
k , (21)

where R̃(m,p)
k is the residual between Q(m)

k and the kernel
dictionary built from the pth target video sequence. It is
computed by

R̃(m,p)
k = min

l∈{1,2,...,nk }
r(q(m)k,l ,A(p)). (22)

We denote the resulting kernel DFRV algorithm as KDFRV.
Both linear DFRV and non-linear KDFRV algorithms are
summarized in Algorithm 2.

Algorithm 2 Video-Based Face Recognition
(DFRV & KDFRV)
Training:

1. Given a sequence - the jth video of subject i, extract
all the frames from it. Detect and crop face regions to
form a set S ij .
2. Separate S ij into K partitions. Augment each
partition by adding artificial images and obtain the
resulting augmented gallery matrix from the kth
partition, Gi

j,k ,∀k = 1, 2, . . . ,K .
3. Use (5) for DFRV (and (11) for KDFRV) to learn
the partition-specific sub-dictionary
Di
j,k ,∀k = 1, 2, . . . ,K . Construct the

sequence-specific dictionary Di
j as in (6).

Testing:
1. Partition the mth query video sequence
Q(m)
=
⋃K

k=1Q
(m)
k , where

Q(m)
k = [q(m)k,1 q

(m)
k,2 . . . q

(m)
k,nk ].

2. (Identification) Use (7) for DFRV (and (19) for
KDFRV) to determine the vote from q(m)k,l ,∀k, l. Then,
use (8) and subject-sequence correspondence m(·) to
make the final decision.
3. (Verification) Find the similarity matrix between
Q(m) and D(p) by (9) for DFRV (and (21) for KDFRV).
The ROC curve can be obtained from the similarity
matrix.

V. EXPERIMENTAL RESULTS
To illustrate the effectiveness of our method, we present
experimental results on four publicly available datasets for
video-based face recognition: the Multiple Biometric Grand
Challenge (MBGC) [14], [15], the Face and Ocular Challenge
Series (FOCS) [6], [16], the Honda/UCSD [9], and the UMD
Comcast10 [17] datasets. For MBGC and FOCS videos, we
use the upper body information in addition to faces for recog-
nizing humans. All cropped face and upper body images were
resized to L = 20×20 pixels. Kernel parameters, the number
of partitions per video K and the number of atoms per sub-
dictionaryK0 are selected through 5-fold cross-validation.We
summarize in Table 1, K and K0 used in our experiments
on the four datasets. The Gaussian kernel with parameter
σ = 32 was used for kernel dictionaries. To train a video
sequence-specific dictionary with three partitions per class,
on average our method takes about 0.54 seconds on a
desktop PC with processor Intel(R) Core(TM) i5-3470
CPU @ 3.20GHz and 8.00 GB RAM using Matlab.

TABLE 1. Summary of number of partitions per video (K ) and number of
atoms per sub-dictionary (K0) in our experiments.

We compare the performance of our method with that
of several state-of-the-art video-based face recognition
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methods, including the Wrapped Gaussian Common
Pole (WGCP) method [28], [50], and an image set-based
Sparse Approximated Nearest Points (SANP) method [29].
When reporting the experimental results on face and upper
body parts using the DFRV-based methods, we use the
following naming convention:
• DFRV-f: DFRV on face images
• DFRV-b: DFRV on upper body images
• DFRV-bf: Score-level fusion of DFRV on both face and
upper body images

• KDFRV-f: KDFRV on face images.

A. MBGC VIDEO VERSION 1
The MBGC Video version 1 dataset (Notre Dame dataset)
contains 399 walking (frontal-face) and 371 activity
(profile-face) video sequences of 146 subjects. Both types
of sequences were collected in standard definition (SD)
format (720 × 480 pixels) and high definition (HD) format
(1440× 1080 pixels). The 399 walking sequences consist of
201 sequences in SD and 198 in HD. For the 371 walking
video sequences, 185 are in SD and 186 are in HD. The top
row of Figure 2(a) shows example frames from four different
walking sequences, where each subject walks toward the
video camerawith a frontal pose formost of the time and turns
to the left or right showing the profile face at the end. The
bottom row of Figure 2(a) shows example frames from four
different activity sequences, where each subject reads from a
paper, and the sequences consists of non-frontal views of the
subject. There exist several challenging conditions including
frontal and profile faces in shadow, and the profile faces
sometimes being heavily covered by one’s hair.

FIGURE 2. Examples of MBGC and UT-Dallas video sequences. (a) MBGC
walking (top row) and activity (bottom row) sequences. (b) UT-Dallas
walking (top row) and activity (bottom row) sequences.

Figure 3 shows an example of the output from the video
partitioning stage. For results in Figure 3, the number of
partitions is set equal to K = 3. Results are presented for

2 subjects for both walking and activity sequences.3 For
subject faces from walking videos shown in Figure 3(a),
the corresponding cropped upper body images from activity
videos are shown in Figure 3(b).4 Each row shows up to
30 partitioned cropped face (or upper body) images from
the same video sequence. The red lines distinguish between
different subjects. It can be seen that each partition from a
video sequence encodes a particular pose and/or illumination
condition, and different partitions represent different
conditions.

1) IDENTIFICATION RESULTS ON THE MBGC DATASET
Following the experiment design in [28], we conducted a
leave-one-out identification experiment on 3 subsets of the
cropped face and upper body images from walking videos.
These 3 subsets are S2 (subjects which have at least two video
sequences: 144 subjects, 397 videos), S3 (subjects which
have at least three video sequences: 55 subjects, 219 videos)
and S4 (subjects which have at least four video sequences:
54 subjects, 216 videos).
Table 2 lists the percentages of correct identifications

for this experiment. The proposed DFRV-based methods
(DFRV-f, KDFRV-f, DFRV-b and DFRV-bf) outperform the
other state-of-the-art methods [28], [29] and [50]. For most
subjects in this dataset, videos of the same subject wearing the
same clothes and performed similar activities, were recorded
in the same day. As different subjects possess different body
appearance, compared to DFRV-f, the use of body infor-
mation in DFRV-b and DFRV-bf enhance the discrimina-
tive identification rate. Comparing DFRV-f and KDFRV-f,
we observe that kernel dictionaries obtained higher average
identification rate on this dataset. This may be the case due
to the fact that kernel dictionaries are able to capture the non-
linearities in data. Hence, with the proper choice of kernel
and parameters, the performance obtained using the kernel
dictionaries is in general better than that given by the linear
dictionaries.
We further compared our method on face images with a

baseline method where the dictionary learning stage in our
DFRVmethod is omitted and the cropped images in each par-
tition are directly used as dictionaries. This method is denoted
as ‘‘no DL’’. As shown in Table 2, omitting the dictionary
learning stage results in the poor performance compared to
the DFRV-f method. This baseline, however, remains better
than SANP [29] as it keeps video partitioning that accounts
for the pose and illumination variations.
In the second set of experiments, we selected videos

associated for those subjects that are in at least two videos
(i.e., S2). We divide all these videos into SD and HD videos,
to conduct ‘‘SD vs HD’’ (SD as probe; HD as gallery) and
‘‘HD vs SD’’ (HD as probe; SD as gallery) experiments.
Correct identification rates are shown in Table 3.

3For the illustration purpose only, here we just show results of 2 subjects.
4As lower body parts are not available for some videos, in our work only

face and upper body images were used for recognition.
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FIGURE 3. Partition results of example face and upper body images from MBGC videos: (a) Face images from walking videos.
(b) The corresponding upper body images from activity videos. Red lines separate different subjects. A subject has at least
two video sequences. Face (or upper body) images from a video sequence are shown in a row, and are further divided into
three partitions. Each partition shows up to 10 face (or upper body) images. A partition represents a particular pose and
illumination condition.

TABLE 2. Identification rates (%) of leave-one-out testing experiments on the MBGC walking videos. The proposed DFRV-based methods outperform
statistical methods and the SANP method, recently proposed in [28] and [29], respectively.

TABLE 3. Identification rates (%) of ‘‘SD vs HD’’ and ‘‘HD vs SD’’ experiments on the MBGC walking video subset S2 (the subset that contains subjects
who have at least two video sequences). In this experiment, most subjects (89 out of 144) have only one video per subject available for training. The
DFRV-bf method achieves the best identification rates.

The DFRV-based methods outperformed the other methods
significantly. The WGCP [28] method finds projections of
training samples on a Grassmann manifold on its tangent
plane and uses them to learn a pre-assumed Gaussian model.
While the geodesic distance of any point on the manifold
to the pole (i.e., the tangent point of the manifold and the
corresponding tangent plane) is maintained, this property
does not always apply to the geodesic distance between
any pair of points on the manifold. Also, the pre-assumed
Gaussian model may not be appropriate to model the training
samples. On the other hand, the SANP [29] method is based
on image set classification. The major limitation of this

method is that it relies on the unseen appearances of a set
to be modeled by affine combinations of samples. While this
may be true for some variations in facial illumination, it does
not hold for the extreme variations especially in the presence
of shadows, pose and expression variations. The proposed
DFRV-based methods overcome this limitation by video par-
titioning and effectively combining different partition-level
sub-dictionaries.

2) VERIFICATION RESULTS ON THE MBGC DATASET
Figure 4(a) and (b) show the corresponding ROC curves
for ‘‘SD vs HD’’ and ‘‘HD vs SD’’ verification
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FIGURE 4. ROC curves of DFRV-based methods on the MBGC walking videos: (a) SD vs HD. (b) HD vs SD. There is no difference between
DFRV-b and DFRV-bf curves. Both DFRV-b and DFRV-bf obtained better verification performances than DFRV-f.

experiments, respectively. As shown in both figures, one
could hardly see the difference between DFRV-b (body only,
in color green) and DFRV-bf (body and face, in color red)
curves as the body feature dominates the overall performance.
In addition, both DFRV-b and DFRV-bf obtained better ver-
ification performances than the DFRV-f method. For both
identification and verification, the HD test samples had better
performances than the SD test samples.

We further examine the effect on the performance of
varying the number of video sequences per person in the
gallery. We divide the videos into two groups before-
hand either as probe, or as gallery. For the most subjects
(89 out of 144), this setting allows only one video per subject
for training, unlike the previous leave-one-out test in which
there are always at least two training video sequences per
subject (the subject whose video is currently used as probe
is excluded). Results presented above show that the WGCP
method in this setting does not perform so well. We observe
that the WGCP method is able to give satisfactory perfor-
mance only when there are enough video sequences for train-
ing, which allows one to obtain more discriminative metrics
for different subjects.

In the MBGC [14] protocol, verifications are specified
by two sets: target and query. The protocol requires the
algorithm to match each target sequence with all query
sequences. We performed three verification experiments:
walking vs walking (WW), activity vs walking (AW), activ-
ity vs activity (AA). Figure 5(a) shows the ROC curves.
We observe that DFRV-f gives better ROC curve than WGCP
for almost all FARs, in WW experiments. In AW and AA
experiments; however, all curves are pretty close to random
performance. These two experiments are very challenging.
According to the MBGC website [15], for the AW and AA
experiments, no results have been reported that are better than
random.

Figures 5(b)(c)(d) show the comparisons between
DFRV-f and DFRV-bf in WW, AW and AA experiments,
respectively. As the MBGC verification protocol is designed
to exclude matching videos of the same subject recorded in
the same day, the body feature no longer contributes as much
as it does in the identification experiments. Therefore, the
gain obtained from the DFRV-bf is limited. A slightly larger
improvement of DFRV-bf over DFRV-f can be observed in
AA experiments (Figure 5(d)) only.

TABLE 4. Score level fusion summary of MBGC version 1
(Notre Dame) experiments.

We regard face and body as distinct biometric modalities.
Table 4 summarizes results of the score level fusion of face
and body similarity scores. The vote and distance scores for
faces are denoted by Cf and Rf , respectively; the vote and
distance scores for upper bodies are denoted by Cb and Rb,
respectively. We linearly combine the face and body similar-
ity scores after normalization. We experimented with median
and median absolute deviation (MAD) normalization.
Normalizing by median and MAD is robust to outliers [51].
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FIGURE 5. ROC curves of the MBGC experiments on walking and activity videos: (a) Comparing DFRV-f with WGCP in WW, AW and AA
experiments. The proposed DFRV-f method gives better ROC curves than WGCP in WW experiments. Both curves are close to the random
guess in the challenging AW and AA experiments. (b) Comparing DFRV-f and DFRV-bf in WW experiments. (c) Comparing DFRV-f and DFRV-bf
in AW experiments. (d) Comparing DFRV-f and DFRV-bf in AA experiments, where a better improvement of DFRV-bf over DFRV-f is obtained.

B. FOCS UT-DALLAS VIDEO
The video challenge of Face and Ocular Challenge
Series (FOCS) [6] is designed to match ‘‘frontal vs frontal’’,
‘‘frontal vs non-frontal’’, and ‘‘non-frontal vs non-frontal’’
video sequences. In this section we present our experimental
results on the UT Dallas video sequences contained in the
FOCS video challenge. The performance of the DFRV-f
algorithm on the UT Dallas dataset shows the strength of our
approach on a difficult data set. In addition, it allows us to
directly compare the performance of the DFRV-f algorithm
to humans [6].

The FOCSUTDallas dataset contains 510 walking (frontal
face) and 506 activity (non-frontal face) video sequences
recorded from 295 subjects with frame size 720×480 pixels.
The top row of Figure 2(b) shows key frames from four
different walking sequences of one subject. The sequences
were acquired on different days. In the walking sequences,

the subject is originally positioned far away from the video
camera, walks towards it with a frontal pose, and finally
turns away from the video camera with profile face. The
bottom row of figure 2(b) shows key frames of four different
activity sequences of the same subject. In these sequences,
the subject stands and talks with another person with a non-
frontal face view to the video camera. The sequences con-
tain normal head motions that occur during a conversation;
e.g., the head turning up to 90 degrees, hand raising and/or
pointing somewhere.

1) IDENTIFICATION RESULTS ON THE FOCS DATASET
We conducted the same leave-one-out tests on 3 subsets:
S2 (189 subjects, 404 videos), S3 (19 subjects, 64 videos),
and S4 (6 subjects, 25 videos) from the UT-Dallas walking
videos. For body images, in order to capture both shape and
temporal information in a low resolution scenario, we took
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FIGURE 6. Sequential upper body differences in grayscale: the grayscale differences between a reference upper body frame and its
subsequent frames in a cycle period of L = 18 frames. For each subject, the corresponding upper body differences computed from a
reference frame are shown in a row as a motion cue of that reference frame. Here there are three rows shown for three different subjects.
This feature captures both the shape and its temporal movement information, while not requiring either silhouette extraction or background
subtraction.

TABLE 5. Identification rates (%) of leave-one-out testing experiments on the FOCS UT-Dallas walking videos. The DFRV-bf method performs the best.

the grayscale differences between a reference upper body
frame and all of its subsequent frames in a cycle period
(L subsequent frames). Then we resized the resulting
concatenated sequential differences as a motion cue of that
reference frame. Figure 6 shows for the three example sub-
jects their sequential upper body differences (in grayscale)
over L = 18 frames, where each row captures a subject’s
upper body shape and information on its temporal move-
ments. This method does not require silhouette extraction
or background subtraction. Table 5 shows the identifica-
tion results. Among all the compared methods, the DFRV-bf
method achieved the best identification rates. Among meth-
ods other than DFRV-bf and DFRV-b (i.e., methods using face
only), the KDFRV-f method, however, did not obtain better
identification performance than DFRV-f and WGCP. Perhaps
the Gaussian kernel with σ = 32 is not the best kernel for
this dataset. Multiple Kernel Learning (MKL) methods can
be adapted to optimally learn the kernel weights [52], [53].
However, this tremendously increases the complexity of
the learning algorithm. The optimization of the choice of
kernel and its parameters is one of our future research
directions.

2) VERIFICATION RESULTS ON THE FOCS DATASET
Like MBGC, FOCS specifies a verification protocol:
1A (walking vs walking), 2A (activity vs walking), and
3A (activity vs activity). In these experiments, 481 walking
videos and 477 activity videos are chosen as query videos.
The size of target sets ranges from 109 to 135 video
sequences. Figure 7 shows ROC curves of verification exper-
iments. In Figure 7(a), we compare the proposed algorithm
with WGCP [28]. In all three experiments, the DFRV-f
algorithm is superior to the WGCP algorithm.

O’Toole et al. [6] evaluated the accuracy of humans
recognizing people in the UT Dallas data set. Human
performance was reported for both static and dynamic pre-
sentations of faces and bodies. This included humans viewing

the original sequence and for sequences edited to contain
only the head. Since the DFRV-f algorithm only encodes
face information, it is reasonable to compare the DFRV-f
with human performance on the original sequences and the
edited face only sequences. In Figure 7(b)(c)(d) we compare
the performance of the DFRV-f algorithm and humans for
experiments 1A, 2A, and 3A. In Figures 7(b) and (d), we
observe that the performance of the DFRV-f algorithm is very
close to humans on the face only matching task. Experiments
1A and 3A are within pose matching tasks; whereas,
2A is cross pose. Reported performance is better than
random; however, not near human level of performance.
In Figures 8(a)(b)(c), we compare DFRV-f and

DFRV-bf in 1A, 2A and 3A experiments, respectively.
As shown, there is not much difference between the two
methods. In fact, unlike MBGC, a subject with different
cloth and facial appearances (as shown in Figure 2(b)) was
recorded in different days. The body feature becomes much
less discriminative and DFRV-b no longer gives satisfactory
identification results. Therefore, for this challenging dataset,
as the face feature dominates the performance, both DFRV-f
and DFRV-bf obtained similar identification and verification
results. The score level fusion between face and body for
DFRV-bf is summarized in Table 6, where scores of the face
feature weigh more as the face features are more discrimina-
tive on this dataset.

C. HONDA/UCSD DATASET
The third set of experiments is conducted on the
Honda/UCSD Dataset [9]. The Honda Dataset consists of
59 video sequences from 20 distinct subjects. We follow the
same procedure used in [29]. The experiments are done in
three cases of the maximum set length (available number of
cropped-face images per video sequence) as defined in [29]:
50, 100 and full length frames. Table 7 shows identification
rates of our methods and other state-of-the-art methods.
Both DFRV-f and KDFRV-f obtained the highest average
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FIGURE 7. ROC curves of FOCS experiments on UT-Dallas videos: (a) comparison between DFRV-f and WGCP [28]; (b)(c)(d) comparison between
DFRV-f and human perception [6]: (b) walking vs walking (c) activity vs walking (d) activity vs activity. Compared to WGCP, our DFRV-f method
gives better ROC curves, which also stay very close to those of face-only human perception in (b)(d) cases.

identification rates. They ranked the second and tied with the
MDA method [54] for the full length case.

D. UMD COMCAST10 DATASET
The UMD Comcast10 dataset contains 12 videos recorded
of a group of 16 subjects. The videos were collected in
a high definition format (1920 × 1088 pixels). They con-
tain sequences of subjects standing without walking toward
the camera, which we refer to as standing sequences, and

sequence(s) of each subject walking toward the camera,
which we refer to as walking sequences. After segmenting the
videos according to subjects and sequence types, we obtained
93 sequences in total: 70 standing sequences and 23 walking
sequences. Figure 9(a) shows example frames from four dif-
ferent standing sequences, where most subjects are standing
in a group. As some subjects were having conversations and
others were looking elsewhere, their faces were sometimes
non-frontal or partially occluded. Figure 9(b) shows example
frames from four different walking sequences, in each of
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FIGURE 8. ROC curves of DFRV-f and DFRV-bf on the UT-Dallas videos. (a) walking vs walking. (b) activity vs walking. (c) activity vs activity. DFRV-bf
obtained higher detection rates than DFRV-f (for FARs > 0.3) in the activity vs activity experiment.

TABLE 6. Score level fusion summary of FOCS (UT-Dallas) experiments.

which a single subject was walking toward the camera, with
a frontal face for most of the time. However, the walking
subject’s head sometimes turned to the right or left showing
a profile face. Furthermore, for both types of sequences, the
camera was not always static. In fact quite often it switched
back and forth, which created more challenging conditions
in these unconstraint video sequences. Figure 9(c) shows
example frames with blurred subjects due to the movement
of the camera.

Following the experiment design in [28], we conducted a
leave-one-out identification experiment on 3 subsets of the
cropped face images from walking videos performed. These
3 subsets are S2 (subjects which have at least two video
sequences: 16 subjects, 93 sequences), S3 (subjects which
have at least three sequences: 15 subjects, 91 sequences)
and S6 (subjects which have at least four sequences: 7 sub-
jects, 51 sequences). Note that for these particular segmented
sequences, the three sets S3, S4 and S5 are identical.

FIGURE 9. Example frames of UMD Comcast10 videos. (a) standing
sequences. (b) walking sequences. (c) Frames with blurred subjects due
to the moving camera. Faces in standing sequences were sometimes
non-frontal or partially occluded, while faces in walking sequences were
frontal for most of the time. Camera’s movement raises the difficulty of
face tracking and recognition.

Table 8 lists the percentages of correct identifications for this
experiment. Both KDFRV-f and DFRV-f outperformed the
other compared methods. In particular, KDFRV-f achieved
100% identification rates on S3 ∼ S6 video subsets.
Figure 10(a) shows the verification performances

in S2, S3 and S6 experiments through ROC curves. From
this figure, ROC curves of S2, S3 and S6 under either the
DFRV-f method or the WGCP method, are indistinguishable.
Both DFRV-f and KDFRV-f give better ROC curves than
the WGCP method. Figure 10(b) shows the ROC curves
for ‘‘Standing vs Walking’’ (standing sequences as probe;

TABLE 7. Identification rates (%) on Honda/UCSD Dataset. Both DFRV-f and KDFRV-f obtained the highest average identification rates.
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TABLE 8. Identification rates (%) of leave-one-out testing experiments on the UMD Comcast10 dataset. The KDFRV-f method outperforms DFRV-f and
other compared methods.

FIGURE 10. (a) ROC curves of the S2, S3, and S6 leave-one-out identification experiments on the UMD Comcast10 dataset. (b) ROC curves of
standing vs walking, and walking vs standing verification experiments on the Comcast10 sequences. Both DFRV-f and KDFRV-f obtained better
ROC curves than the WGCP method.

walking sequences as gallery) and ‘‘Walking vs Standing’’
(walking sequences as probe; standing sequences as gallery)
experiments. For DFRV-f and KDFRV-f, the ROC curve of
the ‘‘Walking vs Standing’’ experiment is slightly better than
the other, which can be explained by the fact that there
are more frames with frontal faces available in a walking
sequence than a standing sequence. Similar to the identi-
fication results, KDFRV-f performs slightly better than the
DFRV-f method. However, they both outperform the WGCP
method.

VI. CONCLUSIONS
We presented a video dictionary-based family of algorithms
for unconstrained video-to-video human identification and
verification. To enhance the discriminative recognition, we
extended our original work in [13] to handle the nonlineari-
ties in video data by learning kernel dictionaries. Moreover,
we used upper body features to improve the recognition
accuracy. We further demonstrated the effectiveness of our
dictionary-based approach by experimentally measuring the
performance gain of our method over a baseline that omits
dictionary learning. Finally, extensive experiments on four
unconstrained video datasets show that our approach
performs better than many well known video-based face
recognition methods in the literature.

Several future directions of inquiry are possible consider-
ing our new approach. Many complicated fusion techniques

go beyond a simple score level fusion such as decision and
feature level fusion. It is very likely that utilization of such
fusion techniques will provide an even greater performance
when facial features are combined with body features for
person recognition.
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